Inside Matlab Wiener2 Function

The Wiener filter requires a prior knowledge of the power spectral density of original image which is unavailable in practice.

wiener2 lowpass-filters a grayscale image that has been degraded by constant power additive noise. wiener2 uses a pixelwise adaptive Wiener method based on statistics estimated from a local neighborhood of each pixel.

The wiener2 function applies a Wiener filter (a type of linear filter) to an image adaptively, tailoring itself to the local image variance. Where the variance is large, wiener2 performs little smoothing. Where the variance is small, wiener2 performs more smoothing.

This approach often produces better results than linear filtering. The adaptive filter is more selective than a comparable linear filter, preserving edges and other high-frequency parts of an image. In addition, there are no design tasks; the wiener2 function handles all preliminary computations and implements the filter for an input image. wiener2, however, does require more computation time than linear filtering.

wiener2 works best when the noise is constant-power (“white”) additive noise, such as Gaussian noise.

Wiener2

Advertisements